Team Group Inc. Team Group Inc.

Q&A

Home Q&A
  • Should You Use Two Sets of Dual Channel RAM? Maximizing Performance and Ensuring Stability

    When it comes to enhancing your computer's performance, maximizing the amount of RAM might seem like a logical step. However, using two sets of dual channel RAM can lead to stability issues and hinder your system's overall performance. In this article, we will explore the reasons why incorporating two sets of dual channel RAM may not be ideal, and provide alternative recommendations to ensure optimal stability and performance for your computer system. Understanding Dual Channel RAM: Dual channel RAM is a technology designed to improve memory bandwidth and speed in your computer system. It works by pairing two identical RAM modules, allowing them to operate together and deliver enhanced performance. With dual channel RAM, data can be accessed simultaneously from two memory modules, resulting in improved system responsiveness. The Drawbacks of Using Two Sets of Dual Channel RAM: Compatibility Issues and System Instability: When you opt for two sets of dual channel RAM, you effectively mix and match four different RAM modules. This mixing and matching can lead to compatibility issues, as the modules may not work seamlessly together. In turn, this can cause system instability, including frequent crashes, freezing, or difficulties in booting up your computer.   Disabling the Dual Channel Feature: The primary purpose of dual channel RAM is to enhance memory bandwidth and speed. However, when you mix and match RAM modules, your system may revert to single-channel operation, disabling the dual channel feature altogether. This downgrade in memory performance can significantly impact your computer's overall speed and responsiveness. Recommendations for Ensuring Stability and Performance: 1. Utilize a Single Set of Dual Channel RAM: To mitigate compatibility issues and guarantee optimal stability and performance, we strongly advise using a single set of dual channel RAM. These RAM kits are specifically designed to work seamlessly together, ensuring compatibility and maximizing the benefits of dual channel technology.   2. Consider Purchasing a Higher Capacity Set: If you find yourself needing more RAM for your system, it is generally recommended to purchase a larger capacity set instead of adding a second set. By opting for a higher capacity set, you can maintain the advantages of dual channel technology while increasing your overall memory capacity. This approach minimizes the chances of compatibility issues and ensures that your system operates at its best. Conclusion: While it may appear tempting to use two sets of dual channel RAM to maximize your computer's performance, it can introduce compatibility issues and system instability. Mixing different RAM modules can disable the dual channel feature and lead to crashes or booting problems. Instead, we strongly recommend using a single set of Dual or Quad channel RAM that is designed to work harmoniously together. Alternatively, if you require more memory, it is advisable to invest in a higher capacity set rather than adding a second set. By following these recommendations, you can ensure both stability and optimal performance for your computer system during memory upgrades.

  • How to overclock your RAM?

    1. ASUS (1) ASUS motherboard (AMD chipset/CPU) a. Open D.O.C.P i. Press “Delete” or “F2” to enter the BIOS. Then press F7 to enter “Advanced Mode”. ii. Press right arrow key to “Ai Tweaker”(Blue frame) and choose “Ai Overclock Tuner”(Green frame). Turn “Auto” into “D.O.C.P”(Red frame). iii. Press F10 to save the changes and exit the BIOS after completing steps above.   b. Manual Overclocking Setting i. Press Delete or F2 to enter BIOS. After entering the BIOS, press F7 to enter Advanced Mode. ii. Press right arrow key to move to Ai Tweaker. Enter Memory Frequency to set the frequency you prefer. iii. After setting the frequency, go down to find DRAM Timing Control (red frame) and press “Enter”. iv. Find DRAM CAS# Latency and set the values according to your RAM specification as below in order. *The value on this screenshot doesn't represent all RAMs' setting. v. Go back to the previous page after setting the CL value. Find DRAM Voltage and fill in the voltage you want.   vi. Press F10 to save the changes and exit the BIOS after completing the steps above.   (2) ASUS motherboard (Intel chipset/CPU) a. Open XMP i. Press Delete or F2 to enter BIOS. Then press F7 to enter Advanced Mode. ii. Press right arrow key to move to Extreme Tweaker(Red frame). Then choose Ai Overclock Tuner(Green frame). Change into XMP(Blue frame) and press F10 to save the data and then leave.   b. Manual Overclocking Setting i. Press Delete or F2 to enter BIOS. Then press F7 to enter Advanced Mode. ii. Press right arrow key to move to Extreme Tweaker and find the DRAM Frequency(Green frame) below. Choose the frequency you prefer(Blue frame) and press “Enter”. iii. Find the DRAM Timing Control(green frame) and press enter after setting the frequency. iv. Find DRAM CAS# Latency and set the values according to your RAM specification as below in order. *The value on this screenshot doesn't represent all RAMs' setting. v. Go back to the previous page and find DRAM Voltage(Green frame) after setting the CL value. Fill in the voltage in the DRAM Voltage.   vi. Press F10 to save the changes and exit the BIOS after completing the steps above.   2. MSI (1) MSI motherboard (AMD chipset/CPU) a. Open D.O.C.P. i. Click “Delete” or “F2” to enter BIOS, and then click “F7” into advanced mode. ii. There are 2 ways to open D.O.C.P. (i) Click “A-XMP”(green frame), choose “2”, click F10 to save and then you can leave the page. (ii) Enter OC(green frame) on the left and switch “A-XMP” inside from “Disable” to “Profile2”(red frame), and click “F10” to save. Then you can leave the page.   b. Manual Overclocking Setting i. Press "Delete" or "F2" to get into BIOS and press F7 to get into "Advanced Mode". ii. Get into "DRAM Frequency"(green frame) and choose the frequency (red frame). iii. After setting the frequency, click "Advanced DRAM Configuration" and fill in the CL value (green frame). iv. After setting the CL value, get into DRAM Voltage(green frame), fill in the voltage(blue frame). v. After doing the steps as above, press "F10" to save the settings.   (2) MSI motherboard (Intel chipset/CPU) a. Open XMP i. Press "Delete" or "F2" to get into BIOS and press F7 to get into "Advanced Mode". ii. You have two choices to open XMP. (i) Click the A-XMP(red frame) on the top, transfer to "ON" and press F10 to save the settings. (ii) Get into OC(red frame), choose "Extreme Memory Profile (X.M.P)"(blue frame) and change from Disable to Enable. Then press F10 to save the settings.   b. Manual Overclocking Setting i. Press "Delete" or "F2" to get into BIOS and press F7 to get into "Advanced Mode". ii. Get into "DRAM Frequency"(red frame) and choose the frequency(red frame). iii. After setting the frequency, choose "Advanced DRAM Configuration"(red frame). iv. Fill in the CL value(green frame) in Advanced DRAM Configuration. v. After setting the CL value, fill in the voltage(blue frame) in "DRAM Voltage"(green frame). vi. After doing all the steps above, press "F10" to save the settings.   3. Gigabyte (1) Gigabyte motherboard (AMD chipset/CPU) a. Open D.O.C.P. i. Click “Delete” or “F2” to enter BIOS. ii. Select M.I.T.(blue frame), select Advanced Memory settings(green frame) and then press “Enter”. iii. Select “Extreme Memory Profile(X.M.P.)”(red frame), press “Enter” to enter “Profile1”(blue frame). And then press “Enter” to check again. iv. Press “F10” to save and leave BIOS after finishing all the steps above.   b. Manual Overclocking Setting i. Press “Delete” or “F2” to enter BIOS. ii. Switch to “M.I.T.”(blue frame), choose Advanced Memory Settings(green frame) and press “Enter”. iii. Select System Memory Multiplier(green frame), set the frequency(blue frame). For instance, input 28.00 if you’d like to set the frequency to 2800Mhz. At the moment, Memory Frequency(red frame) will automatically change into relative frequency. iv. After finishing setting the frequency, find “Memory Timing Mode”(red frame) below and switch “Auto” into “Manual”(green frame). v. Find DRAM CAS# Latency and set the values according to your RAM specification as below in order. *The value on this screenshot doesn't represent all RAMs' setting. vi. After finishing filling in CL Value, back to the last page “M.I.T.” to find “Advanced Voltage Settings”(green frame) and then press “Enter”. vii. Select DRAM Voltage(red frame) and then select Voltage(blue frame). viii. After finishing all the steps above, press “F10” to save and leave BIOS.   (2) Gigabyte motherboard (Intel chipset/CPU) a. Open XMP i. Press “Delete” or “F2” to enter BIOS ii. Switch to “M.I.T.”(blue frame), select “Advanced Memory Settings”(green frame) and press “Enter”. iii. Find “Extreme Memory Profile(X.M.P.)”(red frame), press “Enter” to enter “Profile1”(blue frame), and then press “Enter” again. iv. After finishing all the steps above, you can press “F10” to save and leave BIOS.   b. Manual Overclocking Setting i. Press “Delete” or “F2” to enter BIOS. ii. Switch to “M.I.T.” on the above, select “Advanced Memory Settings” and press “Enter”. iii. Select “System Memory Multiplier”(green frame), set the frequency(blue frame). For instance, input 28.00 if you’d like to set the frequency to 2800Mhz. At the moment, Memory Frequency(red frame) will automatically change into relative frequency. iv. After finishing setting the frequency, select “Channel A Memory Sub Timings”(green frame). (Condition: Follow this step if you plug 2 sticks in the way from Motherboard’s Manual. If you plug in 4 sticks, please select “Channel A & B”.) v. After entering “Channel Memory Sub Timings”, switch “Memory Timing Mode”(green frame) from “Auto” to “Advanced Manual”(blue frame). vi. Find DRAM CAS# Latency and set the values according to your RAM specification as below in order. *The value on this screenshot doesn't represent all RAMs' setting. vii. After finishing the setting of CL value, back to the last page “M.I.T.”, select “Advanced Voltage Settings”(green frame) and then press “Enter”. viii. After entering “Advanced Voltage Settings”, select “DRAM Voltage Control”(green frame) ix. Fill in the proper voltage(blue frame) in DRAM voltage. x. After finishing all the steps above, you can press “F10” to save and leave BIOS.   4. ASrock (1) ASRock motherboard (AMD chipset/CPU) a. Open  D.O.C.P. i. Press Delete or F2 to enter the BIOS. ii. Press F6 to enter Advanced Mode (red frame) iii. Press right arrow key to OC Tweaker(green frame) and find Load XMP Setting(Red frame). Enter to choose XMP 2.0 profile 1(blue frame). iv. Press F10 to save the changes and exit the BIOS after completing the steps above.   b. Manual Overclocking Setting i. Press Delete or F2 to enter BIOS. ii. After entering the BIOS, press F6 to enter Advanced Mode. iii. Press right arrow key to move to OC Tweaker and find DRAM Frequency (red frame). Enter to choose a frequency you prefer.   iv.Find DRAM CAS# Latency and set the values according to your RAM specification as below in order. *The value on this screenshot doesn't represent all RAMs' setting. v. Go back to the previous page after setting the CL value. Find DRAM Voltage and fill in the voltage. vi. Press F10 to save the changes and exit the BIOS after completing the steps above.   (2) ASRock motherboard (Intel chipset/CPU) a. Open XMP i. Press “Delete” or “F2” to enter BIOS. ii. Press “F6” to enter “Advanced Mode”(red frame) after entering BIOS. iii. Press right arrow key to move to “OC Tweaker” (red frame). “Find DRAM Configuration”(blue frame) and press “Enter”. iv. Find “Load XMP Setting”(red frame). Press “Enter”, select “XMP 2.0 Profile 1” and press “Enter” again to confirm. v. Press “F10” to save the changes and exit the BIOS after completing the steps above.   b. Manual Overclocking Setting i. Press “Delete” or “F2” to enter BIOS. ii. Press “F6” to enter “Advanced Mode”(red frame). iii. Press right arrow key to move to “OC Tweaker”(red frame). Find “DRAM Configuration”(blue frame) and press “Enter”. iv. Find the DRAM Frequency below and choose the frequency you prefer(blue frame). v. Find DRAM CAS# Latency and set the values according to your RAM specification as below in order. *The value on this screenshot doesn't represent all RAMs' setting. vi. Go back to the previous page after setting the CL value. Choose Voltage Configuration (red frame) to enter. vii. Fill in the voltage in “DRAM Voltage”(red frame) viii. Press “F10” to save the changes and exit the BIOS after completing the steps above.

  • The process to handle memory errors

    Have you ever encountered installing or boot issue while using the memory? Do you know how to use the memory correctly? Let’s introduce the simple memory debugging process now! 1. Installation method The correct hand position for installing the memory can ensure the force on the gold contacts of the memory is even to avoid damage. When installing the memory, make sure there’s no dust or foreign objects on the gold contacts of the memory and the motherboard slots. Foreign objects or dander might easily burn the memory. 2. PC won’t boot (Cannot enter BIOS) First, refer to the order of the motherboard memory slot. → Install the memory (single or dual channel) in the correct memory slots of the motherboard. → Check if it can boot normally. →dual channel         →single channel The memory slots of each brand of the motherboard have a custom order. Please refer to the manual of the motherboard.      If already installed in the correct position but still can’t boot. → Install a single memory in a slot of the motherboard in turns for testing. → Find out which memory has a problem / If the problem that the PC is unable to boot has been confirmed, please contact the manufacturer for repair. Cross test to see if there is a problem with the memory slots of the motherboard. → Install the memory that works normally in DIMM1~DIMM4 in turns to see if all DIMM slots are working. If there’s another motherboard available → Install memory on the different motherboard to see if it’s working normally. → If it is still not working, it can be inferred that it is caused by the memory.            3.  RGB lighting issue If RGB memory’s lighting is not working, it is mostly caused by the LED lightbulbs. It should be sent for repair directly. If RGB memory’s lighting cannot be controlled, please install and test with only one RGB software, or update RGB software to the latest version. While testing, please make sure other software is completely uninstalled. Please do not use alcohol or eraser to clean gold fingers.

Compare

Compare Clear